Black carbon fractal morphology and short-wave radiative impact: a modelling study

نویسنده

  • M. Kahnert
چکیده

We investigate the impact of the morphological properties of freshly emitted black carbon aerosols on optical properties and on radiative forcing. To this end, we model the optical properties of fractal black carbon aggregates by use of numerically exact solutions to Maxwell’s equations within a spectral range from the UVC to the mid-IR. The results are coupled to radiative transfer computations, in which we consider six realistic case studies representing different atmospheric pollution conditions and surface albedos. The spectrally integrated radiative impacts of black carbon are compared for two different fractal morphologies, which brace the range of recently reported experimental observations of black carbon fractal structures. We also gauge our results by performing corresponding calculations based on the homogeneous sphere approximation, which is commonly employed in climate models. We find that at top of atmosphere the aggregate models yield radiative impacts that can be as much as 2 times higher than those based on the homogeneous sphere approximation. An aggregate model with a low fractal dimension can predict a radiative impact that is higher than that obtained with a high fractal dimension by a factor ranging between 1.1–1.6. Although the lower end of this scale seems like a rather small effect, a closer analysis reveals that the single scattering optical properties of more compact and more lacy aggregates differ considerably. In radiative flux computations there can be a partial cancellation due to the opposing effects of different error sources. However, this cancellation effect can strongly depend on atmospheric conditions and is therefore quite unpredictable. We conclude that the fractal morphology of black carbon aerosols and their fractal parameters can have a profound impact on their radiative forcCorrespondence to: M. Kahnert ([email protected]) ing effect, and that the use of the homogeneous sphere model introduces unacceptably high biases in radiative impact studies. We emphasise that there are other potentially important morphological features that have not been addressed in the present study, such as sintering and coating of freshly emitted black carbon by films of organic material. Finally, we found that the spectral variation of the absorption cross section of black carbon significantly deviates from a simple 1/λ scaling law. We therefore discourage the use of single-wavelength absorption measurements in conjunction with a 1/λ scaling relation in broadband radiative forcing simulations of black carbon.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radiative heat transfer: many-body effects

Heat transfer by electromagnetic radiation is one of the common methods of energy transfer between objects. Using the fluctuation-dissipation theorem, we have studied the effect of particle arrangement in the transmission of radiative heat in many-body systems. In order to show the effect of the structure morphology on the collective properties, the radiative heat transfer is studied and the re...

متن کامل

Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments.

Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the optical properties of BC particles under ambient conditions in Beijing, Ch...

متن کامل

Black carbon radiative forcing at TOA decreased during aging

During aging processing, black carbon (also called soot) particles may tend to be mixed with other aerosols, and highly influence their radiative forcing. In this study, freshly emitted soot particles were simulated as fractal aggregates composed of small spherical primary monomers. After aging in the atmosphere, soot monomers were coated by a thinly layer of sulfate as thinly coated soot parti...

متن کامل

Morphology of Polyethylene–Carbon Black Composites

Carbon black is a common polymer additive that is used for reinforcement and for its ability to enhance physical properties, such as conductivity. This article pertains to an X-ray scattering (SAXS) study of a conductive grade of carbon black and carbon black–polymer composites. The scattering pattern for such blacks displays a surface-fractal-like power-law decay over many decades in scatterin...

متن کامل

Coupling aerosol optics to the MATCH (v5.5.0) chemical transport model and the SALSA (v1) aerosol microphysics module

A new aerosol-optics model is implemented in which realistic morphologies and mixing states are assumed, especially for black carbon particles. The model includes both external and internal mixing of all chemical species, it treats externally mixed black carbon as fractal aggregates, and it accounts for inhomogeneous internal mixing of black carbon by use of a novel “core-grey-shell” model. Sim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011